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Amplification by Interdigital Excitation of
Space-Charge Waves in Semiconductors

HENRI BAUDRAND, TANOS EL KHOURY, AND DESIRE LILONGA

Abstract —A new concept of amplification of the electromagnetic (EM)

wave as a consequence of its interaction with a space-charge wave in a

semiconductor is analyzed. The EM wave is appfied to an interdigital line

which in tom excites a space-charge wave in a bigh-resistivity silicon. The

theoretical calculations are carried out by means of the least-square

bonndary residuaf method, where a theoretical gain of 84 dB is obtained at

synchronism of the third harmonic of the wave. The experimental device

exhibits a net gain of 13 dB at synchronism. The mobifity of the carriers in

the semiconductor is deduced out of tfte experimental results.

I. INTRODUCTION

T HE CREATION of space-charge waves in serhicon-

ductors is the basis of the amplification phenomenon

in many amplifying devices. This wave, which is produced

by the charge modulation, should be drifted through the

semiconductor by the application of a dc voltage. The

charge modulation can be used either directly, as in

transit-time devices like IMPATT diodes which offer gain

when the half-period of the input signal is approximately

equal to the transit-time [1], [2] or by achieving its coupling

with a slow wave. In the latter case, the interaction occurs

when the velocity of the space-charge wave is greater than

or equal to that of the slow wave, as in acoustic [3],

magrietostatic [4], or electromagnetic slow-wave devices. As

far as the electromagnetic wave is concerned, the idea of

perfecting the solid-state version of the traveling-wave tube

has encouraged many authors, among whom we mention

just a few pioneers, to investigate the possibilities of ob-

taining the coupling between the slowed wave and the drift

current of carriers in a semiconductor [5]–[11]. The fact

that the drift velocity in a semiconductor exceeds hardly

the limit of 105 m/s requires that the slow-wave structure,

such as the meander or interdigital lines, offer a delay rate

of about 1000 in order to achieve a gctod coupling between

the wave and the carriers. In these conditions, losses and

dimensional problems are serious limitations which cannot

be overcome easily.
It does not seem necessary that the electromagnetic wave

has a group velocity synchronized with that of the carriers,

but the coupling of the carriers with space-harmonics of
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the EM field can provide gain, as in superlattices in which

the semiconductor resistivity is modulated periodically [12].

In this paper, we propose a new type of structure for

which we study the interaction between the space-charge

wave produced in a high-resistivity semiconductor and the

space harmonics of the field produced by an interdigital

line.

The role of this line differs from that of a slow-wave

structure, as the length of the conductors is not enough to

permit the propagation of the wave along the line fingers

and so losses are considerably reduced. The mechanism of

operation consists in producing a modulation of the charge

in the semiconductor by the application of the ac voltage to

the input, and then drifting the modulated charge along the

seniiconductor with the aid of a dc voltage, hence produc-

ing a space-charge wave. Now any variation in the charge

density &thin the semiconductor would modify the charge

distribution on the conductors of the line by electrostatic

influence. We may then expect an efficient interaction

when the wavelength of the space-charge wave is equal to

the period of the interdigital line, or to whole fractions of

the period for higher-order space-harmonics. In order to

reduce the attenuation of the space-charge wave, the semi-

conductor should be a high-resistivit y one.

II. THEORY

The structure under study is shown in Fig. 1. The

interdigital line provides the periodicity of the device but,

unlike a classical delay line, the small length of its fingers

does not permit a propagation phenomenon along the

conductors at the frequencies used. The input and output

circuits are coupled capacitively to the line so that each

finger can be electrically isolated from the rest of the

structure. To develop the physical model, we make the
following assumptions:

The semiconductor is an n-type one, where only elec-

trons tie considered as carriers.

The electron dynamics are adequately described by the

classical Boltzmann transport equation with dominant col-

lision assumption.

No magnetic field is applied to the system, the tempera-

ture gradient is neglected and the local electrical field is

described by Poisson’s equation.

For a small signal analysis, assuming sinusoidal time

variations, the following fundamental equations can be
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Fig. 1. The amplifier structure.

written in the semiconductor:

vxi2=-jq@

V-i=c!
V.f= – j~p

~=”’’(+’p)+poo

(1)

(2)

(3)

(4)

(5)

where A ~ = [c &/po] 1/2 is the Debye length, o, and c,

are the conductivity and dielectric constant of the semicon-

ductor, PO is the charge density at equilibrium, UOthe drift

velocity in Z direction (Fig. 2), and .U~ = kT/q is Me

thermal potential. Combining (4) and (5), we obt@.n the

propagation equation of the charge density p in the semi-

conductor

@’”(’+@3$+- [6)

The structure periodicity leads to find a solution of (6)

as series expansion of space harmonics

~=.~

where

[ 1
1/2

a;=i
A+p2n2+j__&u+nPvo)

c yT

and /3 = 2v/p with p = period of the structure. We note

that the real part of a; must be nonnegative, as the charge

expansion is considered only in the semiconductor (Fig.O

$

I
- g+

Fig. 2. Unit cell of the periodic structure.

Quasi-Static Assumption

The complete study of space-charge waves in a semicon-

ductor shows the existence of TE and TM modes [5], [8],

but we will consider only TM modes, as the longitudinal

component of the electric field Ey should be nonzero. At

the frequencies used, the quasi-static assumption is valid so

that the electrical potential satisfies the following equations

inside and outside the semiconductor:

(8)

Ivw=o, X>o

solutions of (8) are also expansions of space harmonics so

that

V(x, y) =

[

~(Anexp[-anx+ jnfly], X>o

i(B.exp[a.x]+c. exp[a;x])exp[j#yl, X<o
n

(9)

where a.= in/31 and A., Bn, and C. are amplitude con-

stants, to be determined by the boundary conditions:

i) Ey is continuous at

x= O-+ An= Bn+Cn. (lo)

ii) The normal component of the total current density is

zero at the insulator-semiconductor interface (the insulator

is supposed to be very thin)

‘x’-O=”o[Ex-:”*lx.o=O’11)
where

bn= ~[l+~;(a;-a~)], with p.=c,Cn(a; -a:)
n

using the relations (10) and (11), the electric field EY and
the .&rface charge density p=can’ be written

Ey = ~ – jxnexp [ j@Y]

n

P,= &D. X.exp[@8y]
n

as

(12)

(13)
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Fig. 3. Theoretical gain.

where

X.= n~An

and

Dn=:[l+L&(Bn+:cn)]

Now, the problem is reduced to the determination of the

only unknown series, i.e., X. parameters. To do this, we
notice that E’ and p, satisfy the following boundary

conditions:

[ 1E’(O, y)= –j ~X~exp[jn~y] =0
n

on the conductor surface (14)

[ 1P,(o>Y)= ~. XQJnf=fp[jn/3y] =0
n

between the conductors. (15)

The couple of (14) and (15) should be solved simulta-

neously for X.. The calculations are camied out by the

least-square boundary residual method (Appendix I) where
the total charge on the conductors and the potential distri-

bution can be deduced immediately. Currents and voltages

of the conductors are found to be

I= jaQ

= jso~ Lp, dy
Cond.

[ 1= jucoL~ond, ~DnXnexp [ jn~y] dy (16)
n

where L is the finger length in the z direction. In order to

determine the total gain, we consider the structure as a

serial association of two-port networks, each representing

the unit cell of the structure which embraces two conduc-

tors (Fig. 2). Using (16) and (17), currents and voltages can

be calculated on the two conductors of the unit cell,

yielding the characteristics of the elementary network and

consequently those of the overall network (Appendix II).

The potential on the conductors should be practically

constant, but in our case, we have chosen the potential

values at y = (W/4) and y = (p/2)+( W/4) which con-

stitute the best evaluation of the voltages of the two

conductors of the unit cell. Figs. 3 and 4 show the varia-

tions of gain and stability factor for the device specifica-

tions indicated. The theoretical study predicts maximum

gai~ for the second and fourth harmonics of the fundamen-

tal frequency, where the stability factor has minima for the

odd harmonics so that there would be possibility y of obtain-

ing gain for all of the harmonics. The experiment will

confirm this fact, as we will see later. The ac voltage

applied to the half of the conductors of the line, creates

@fferent potentials on the consecutive fingers setting up an
electric field which reacts with the drift electrons in the

semiconductors by proximity effect.

Reciprocally, any change in the charge density within

the semiconductor results in variations of the charge distri-

bution on the conductors of the line by electrostatic effect.

The efficient interaction between the field and the space-

charge wave occurs when the wavelength of the latter is

equal to the period of the interdigital line p (or whole

fractions of p for higher order space-harmonics). The

space-charge wave length is

(18)
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Fig. 4. Stability factor variations withthe frequency.

where j is the signal frequency. Therefore, the synchronism

condition would imply

(19)

where n is the order of the harmonics of the EM field. As

long as the mobility can be assumed constant in the bias

range, we can write

(20)

where V{ and V2’ are two cjifferent bias voltages and ~1, jz

are the corresponding frequencies for which synchronism

occurs with the same space-harmonic. The experimental

results verify this proportionrdity relation. It should be

noted that in order to carry out a rigorous analysis of the

problem, a spatial modulation of the charge in the stx-ni-

conductor should be taken into account across the width of

the conductor i.e; in the drift direction. In fact there would

be opposite space-charge layers at the ends of the conduc-

tor width [13]. However, the semiconductor used here is a

high-resistivity one and it acts more as a dielectric than a

conductor at the frequencies used, so that these kind of

field effects can be neglected without introducing a signifi-

cant error.

III. EXPERIMENTAL RESULTS

The structure used for the experimental study is that of

Fig. 1. The interdigital line is composed of eight pairs of

gold conductors on alumina substrate, where the width and

the spacing of the fingers is 20 pm. With this choice, the
total width of the structure would correspond to input and

output impedances of 50 Q for the feeding and outgoing

microstrips. The length of conductors is 1 mm, not enough

to permit a propagation phenomenon at the range of

frequencies used (l–2 GHz). In order to avoid short-cir-

cuits, each conductor is isolated from the neighboring ones

“TTT
Fig. 5. Schematic diagram of the experimental set up.

and the input and output circuits are capacitively coupled

to the line through an insulating film deposited. on the line.

A silicon bar 3 mm long, 0.9 m& large, and 30 pm thick

has been laid on the line, isolated from it by a thin film of

0.5 pm thickness. The bias voltage is applied to the semi-

conductor through ohmic contacts 1 mm apart, where the

high resistivity of the silicon (UO= 10-4 L? cm-1) is sup-

posed to reduce the propagation losses of the space-charge

wave. The semiconductor can be made thinner if it is more

heavily doped. In order to measure the voltage gain, the

experimental set-up of Fig. 5 has been used. In a first step,

the transfer characteristics of the device with no bias

voltage to the semiconductor has been measured and the

results are illustrated on Fig. 6, where only one important

resonance is observed for f = 0.9 GHz. Then, experimental

data have been obtained for two different bias voltages of

400 and 450 V for V’= 450 V, there maxima show up (Fig.

7). The maximum gain of 13 db corresponds to the third

harmonic of the fundamental frequency. It can be noted

that the maxima occur for the frequencies of 1.07 GHz, 11.6
GHz, and 2.12 GHz, respectively, with a difference of

approximately 0.53 GHz between the consecutive ones.

The synchronism relation is

(21)
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Fig. 6. Transfer characteristics of the passive device.
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Fig. 7. Experimental gain versus frequency.
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giving the values of 2, 3, and 4 for n, where the fact that

the second, third, and fourth harmonics are synchronized

with the space-charge wave is confirmed. With p =80 pm,

we find a drift velocity of UO= 4.24 x104 m/s for the

carriers. The electric field in the semiconductor is EO = 450

x103 V/m and the mobility of the electrons is found to be

P.= 924 cm2/V os. The mobility of the same sample of
silicon was measured in another experiment by an acoustic

interaction technique, with a drift velocity of 3.48X103

m/s and the obtained value was 1268 cm2/V os. This

difference may be interpreted in two ways: either the

mobility decreases as saturation is approached, or the

surface state of the silicon play a major role. The experi-

ment reveals that an important gain occurs for the third

harmonic, which is not obtained directly in the theoretical

‘ gain curve. However, as explained before, the difference is

due to a net decrease of the stability factor at this frequency.

IV. CONCLUSION

A new concept of the excitation of a space-charge wave

in a semiconductor by an interdigital line has been dis-

cussed and an original method is proposed to analyze the

physical problem. The theoretical possibilities of interac-

tion between space-harmonics of an EM field produced by

an interdigital line and the space-charge wave in a semi-

conductor have been verified experimentally. The compari-

son between the experimental data obtained for the biased

and unbiased semiconductor proves that the device can

provide net gain and the occurrence of output peaks is

consistent with the theory. The gain obtained experiment-

ally is less than the expected one, since losses have not

been taken into account in the theory and no matching

element has been used in the experimental setup. In order

to increase the gain, it would be possible to extend the

interaction path by increasing the number of conductors of

the line, where the interaction would take place at lower

frequencies.

The generation and amplification of space-charge waves

as done in this experiment allows their use in signal

processing as done with acoustic or magnetostatic waves.

The use of semiconductor as substrate permits the elabora-

tion of the device in a fully integrated technology with a

frequency rise bonus. With a structure period of 8 pm, we

can expect an excitation at 20 GHz. Moreover, if the

surface of the semiconductor is perfectly controlled, we

may hope to build 80-GHz amplifiers in planar technology

with a conductor width of 0.5 pm. At last, the least-square

boundary residual method seems quite well adapted to this

kind of analysis, as the time savings in the numerical

treatment of the problem is not negligible.
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APPENDIX I

LEAST-SQUARE BOUNDARY RESIDUAL TECHNIQUE

The least-square residual method is an approximation

method which is applied in order to obtain the best solu-

tion of the problems characterized by N conditions satis-

fied by NO variables [14], [15].

Let the domain D be defined, when the electromagnetic

field can be expressed in a ~. basis, truncated up to the

order NO.

For each point M, of D, the Maxwell equations can be

written as

: an(i) .xn=o, with i=l,2,, ... N. (Al)
~=o

In general, the equations are not valid simultaneously

due to this truncature. The least-square technique consists

in finding the best solution by the minimization of the

following expression:

2

j-(xl, x2,... ,Xn)= ~ f an(i).Xn (A2)
j=ll~=o I

No

where the expression ~ an(i)” X. is called the residue at

point Mi. ~=Q

Now, if we introduce a variable y with continuous

variation, we will have

a.(i) =an(~t)

and we obtain

f(xl, x2,-””, Xn)=j ; an(y).xn 2dy (A3)
yED ~=o

and the expression to be minimized:

f(x)=~.D[mgo.:o”:(Y)”n(Y)x=” 1
4Y (A4)

f(x) = ~ Am,nx;xn with X=(X1,X2,”””, Xn )
m,n

(A5)

and

(A6)

This zl~,~ matrix is called the least-square matrix, as it

is the representation of an operator A in the { IJIn} basis

A m,n = (IIJm14)n)= (Alan) )(A7)

We have to solve the equation

(XIAIX) = A(XIX). (A8)

Here, the minimum satisfies the equation

AX= AX. (A9)

Among all of the eigenvalues A, we will look for the

smallest one, because at the minimum we have

(XIAIX)=~&(XIX). (A1O)
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It can be noted that, in the case of a periodic structure, A. Stability Factor

the integration on the D domain is reduced to an integra- te degree of stability of the two-port network can be
tion on one period. One notes that, for the interdigital line, described by the Linvill’s parameter
we have taken

{

~ _ 2’@(Y11)”Q(Y22) -9( Y12” Y21)
exp [ jt~y ] on the conductors (A19)

%(Y)= IY21” Y121
D. exp [ jn~y ] between the conductors.

which is invariant under immittance substitution
(All)

y~Z, Y,h, andg.

APPENDIX II

TYPICAL CHARACTERISTICS OF THE EQUIVALENT

NETWORK

The whole structure studied in the paper maybe consid-

ered as a serial association of elementary cells, each one

including two consecutive conductors, but as for their

electrical behavior, these cells are connected in parallel.

Our approach consists of representing each unit cell as a

two-port network, where the two conductors are the input

and output ports, and we have

The criterion for unconditional stability may be written as

k >1, provided .Q(ZII) and .%’(Z~2) >0. When –1 < k <1,

the network is in the region of conditional stability.

B. Directivity

The nonreciprocity of the network is measured by the

ratio

d=ti
Y12

(A20)

which is also invariant under the immittance substitution.

[;l=’ZI[21(AU)c.Power Gain

If Z~ is the value of the load impedance, power gain is

where [Z] is the impedance matrix of the unit cell. The defined as

small signal assumption, hence the linear behavior of the

network, allows the application of the superposition princi-
P

G=?= ‘[zL]
(A21)

pie. As the unit cell includes two conductors, it seems

reasonable to superpose the two eigenmodes associated to

the two smallest eigenvalues of the least-square matrix h ‘{zn ‘L~i? 21

(Appendix I). If X and X’ are taken as the two eigenvec-

tors corresponding to these two smallest eigenvalues, the

(A12) becomes

and

and the elements of the impedance matrix will be

Zll =
v1x12x/ – 12 XV1X,

A

I1xvlx/ – VIXIIX,
Z12=

A

Z21=
V2x12xr – 12XV2X,

A

11XV2X,– 11 X,V2X
Z22=

A

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

where

A = 11X12X,– 12X11X,,

In order to obtain the matrix impedance of the whole

line [Z ‘], the elements of the [Z] are divided by N, where

N is the number of elementary cells, connected in parallel,

to constitute the interdigital line.

The stability factor, directivity, and the power gain may

be readily deduced from the [Z’] matrix [16] -[18].

where Zi. is the input impedance.
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The Electrostatic Field of Conducting Bodies
in Multiple Dielectric Media
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Abstract —A method for computing the electrostatic fields and the

capacitance matrix for a multiconductor system in a multiple dielectric

region is presented. The number of con@sctors and the number of dielec-

trics in this analysis are arbitrary. Some of the conductors maybe of finite

volume and others may be infinitesimally thin. The conductors can be

either above a single ground plane or between two parallel ground planes.

The formulation is obtained by using a free-space Green% function in

conjunction with totaf charge on the conductor-to-dielectric interfaces and

polarization charge on the dielectric-to-dielectric interfaces. The solution is

effected by the method of moments using trfattgnkr suhdomains with

piecewke constant expansion functions “and point ‘matcbirtg for testing.

Computed results are given for some finite-length conducting lines, com-

pared to previous resufts obtained by two-dfmensiottaf analysis.
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I. INTRODUCTION

T HE OBJECTIVE of this paper is to compute the

electrostatic fields and the capacitance matrix of arbi-

trarily shaped conductors embedded in multiple dielect@c

regions. The entire system could be situated over a fir@e or

infinite ground plane, or could be between two ground

plbes. This solution is useful for finding equivalent cir-

cuits of microst~p junctions and discontinuities and for

vias connecting conductors located in various dielectric

regions. Some of the conductors may be of finite volume

and others may be infinitesimally ~hin.

Recent advances in integrated circuit technology, such as

VLSI design in the microwave region, necessitate a

sophisticated analysis, design, and construction of trarts-
mission lines to carry signals from one end to the other.

Even though a large volume of literature exists to analyze

ai infinitely long transmission” line, there are very few

satisfactory procedures to solve for the equivalent circuits
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